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ABSTRACT
This study developed and evaluated a comprehensive forecasting framework for 
predicting the dynamics of agricultural nutrients (N, P2O5, and K2O) in India across three 
dimensions: consumption, exports, and imports. We implemented a diverse set of nine 
forecasting models, spanning traditional time series methods (ARIMA), machine learning 
algorithms (Random Forest, SVM, XGBoost), deep learning approaches (ANN, LSTM, 
GRU), and hybrid architectures (ARIMA–LSTM, XGBoost–LSTM. These were compared 
using historical data, and performance was analyzed with MAE (mean absolute error), 
MSE (mean squared error), and RMSE (root mean squared error). ARIMA performed 
consistently well in predicting trade in N and K2O, while advanced machine learning 
models like XGBoost and Random Forest excelled in forecasting agricultural consumption. 
Six-year-ahead predictions (2024–2029) indicate rising nitrogen consumption (65,027 
tons to 69,845 tons), stable phosphorus usage (29,006 tons to 30,211 tons), and 
increasing potassium demand (20,807 tons to 24,301 tons). Our results suggest model- 
specific advantages for different prediction scenarios, with hybrid models providing 
negligible improvements over simpler approaches. This research offers valuable insights 
for agricultural planning, policymaking, and food security in India. The data used were 
obtained from authoritative sources, including the Food and Agriculture Organization 
(FAO) and the Fertilizer Association of India (FAI), ensuring reliability and national 
relevance.

HIGHLIGHTS
•	 A comprehensive forecasting framework developed for agricultural nutrient dynamics 

in India
•	 Nine models were compared, including the time series, machine learning, and deep 

learning approaches.
•	 ARIMA excelled in predicting N and K2O trade; XGBoost and Random Forest were 

best for consumption
•	 Six-year forecasts show increasing N and K2O consumption and stable P2O5 usage
•	 Hybrid models offer minimal improvements over simpler approaches

1.  Introduction

Even today, food insecurity and undernutrition remain serious concerns in developing countries such as 
India (Pawlak & Kołodziejczak, 2020; Ritchie et  al., 2018). High yields from limited arable land are required 
to achieve sustainable food security (Tang et  al., 2022). Soil fertility is crucial for proper crop production, 
especially in commercial agriculture. The proper usage of agricultural inputs ensures greater agricultural 
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productivity and eventually leads to the holistic growth of agriculture in any economy (Sujan & Ananta, 
2021). Nitrogen, phosphorus, and potash are the primary nutrients required for crop production. In addi-
tion, the majority of fertilizers produced comprise these three macronutrients. Nitrogen is responsible for 
the formation of plant proteins (Leghari et  al., 2016) and is crucial for photosynthesis (Malhotra et  al., 
2018), while potash is required for carbohydrate and starch synthesis (Prajapati & Modi, 2012). The use 
of soil nutrients in the green revolution has brought about a 5.6 × increase in food production, upgrading 
India’s status from begging bowl to a self-sufficient nation (Arvind et  al., 2022). Approximately 50% of 
global food production depends on the diligent and sustainable use of fertilizers (The Fertilizer Institute, 
n.d), and over the last few decades, the intensive use of synthetic nitrogen fertilizers has increased crop 
productivity (Wu et  al., 2018), although only 47% of those applied in soil are converted into crop output 
(Lassaletta et al., 2014). Soil can be enriched with N, P, and K through both organic and inorganic sources. 
Inorganic fertilizer accounts to about 64% of nitrogen, 78% of phosphorous and 26% of potassium inputs 
in Indian agriculture (Pathak et  al., 2010).

In addition to seeds and irrigation, fertilizers are considered one of the most important inputs required 
for crop production (Chand & Pavithra, 2015). Despite being a critical element that causes uncertainty in 
crop production, the role of fertilizers or soil nutrients in crop production and eventually in ensuring 
food security has largely been ignored (Asseng et  al., 2015). Studies have revealed that fertilizer use has 
not only increased the output of various crops in India but has also brought about overall agricultural 
growth in the country (Chand & Pandey, 2009). Thus, there is a need to predict the future consumption 
of N, P, and K soil macronutrients. In India, potassic imports are greater than nitrogen and phosphatic 
imports. It is mainly the quantity of N, P, and K, which largely affects the quantity of production, thereby 
having a deep impact on food and nutritional security (Dawson & Hilton, 2011). Therefore, future export 
and import projections of these nutrients are essential. These predictions will be helpful in analysing 
quantum of future crop production as well as will be helpful in stimulating fertilizer marketing.

Researchers have developed various methods for predicting N, P, and K usage and availability. Few stud-
ies have predicted fertilization by regressing fertilizer usage data with different exogenous variables, such 
as Tenkorang and Lowenberg-DeBoer (2009) regressed fertilizer consumption data with crop yield and pre-
dicted future demand for fertilizers by using crop models (Neset & Cordell, 2012). combined expert opin-
ions and past fertilizer consumption data to predict future fertilization. However, a major drawback of this 
method is that the opinions are too subjective, and hence, the projections may be biased (Pisuttinusart 
et  al., 2022). forecasted import demand for nitrogen, potassium, and compound fertilizer in Thailand by 
utilizing fertilizer data from 2008 and 2021 and fitting the Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model (Chary et  al., 2023). fitted different linear and nonlinear models for forecasting the 
consumption of fertilizer nutrients, such as nitrogen, phosphorus, and potassium, by utilizing fertilizer nutri-
ent consumption data from 1950–51 to 2021–22. The results indicated that the cubic model was best fitted 
for nitrogen and phosphorus usage, and a power model for potassium usage (Gao & McCallister, 2024). 
considered the impact of socioeconomic factors under a shared socioeconomic pathway and proposed six 
machine learning algorithms for predicting global fertilizer usage from 2020 to 2100 (Gao et  al., 2024). 
employed U.S. fertilizer market data from 1980 to 2023 and fitted various models for predicting fertilizer 
demand, prices, and fertilizer use in crops such as corn, cotton, and wheat produced in Texas. The research-
ers found the Vector Autoregressive model (VAR), ARIMA model, and Autoregressive Distributed Lag model 
(ARDL) to be the best-suited models for forecasting fertilizer demand, prices, and fertilizer use in crops such 
as corn, cotton, and wheat produced in Texas, respectively.

Studies on agricultural forecasting tend to focus on predicting one dimension at a time—production 
or consumption—rather than studying how exports and imports are connected. In addition, many pre-
vious studies focus on only a few forecasting methods instead of examining all the major approaches 
side by side. As a result, people may not fully understand what each model can and cannot do in chal-
lenging agricultural settings.

For this reason, this study introduces a new framework that enables simultaneous evaluation of nine 
forecasting algorithms for the agricultural nutrients N, P2O5 and K2O, as well as for the economic factors 
of consumption, export and import. This is believed to be the first study to compare multiple dietary 
models using the same metrics on Indian nutrient information. Such a comparison not only improves 
scientific knowledge but also supplies practical tools for planning and making decisions in agriculture.
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Generally, earlier studies (i) predict one stream (consumption or trading (instead of the tri-dimensional 
NPK system (consumption, exports, imports)); (ii) considers only a small set of models that constrain 
apples-to-apples comparisons between statistical, ML, DL and hybrid classes; (iii) reports point errors 
without statistics importance/strength of nutrients/tasks; (iv) qualitative discussion of data cleaning; but 
seldom quantifies missingness/outliers; and (v) makes high level recommendations without operational 
advice on policy shocks (subsidy reforms, trade restrictions) or global disruptions. This study addresses 
these gaps by (1) modeling N, P2O5 and K2O all together consumption/export/import; (2) comparing nine 
models on the same protocol; (3) adding formal significance tests and uncertainty quantification; (4) 
offering a transparent; data‑quality audit; and (5) providing playbooks to take action in policy‑shock 
scenarios.

2.  Methods

A multi-model forecasting framework was used to analyze and forecast Indian agricultural nutrient 
dynamics in terms of nitrogen (N), phosphorus (P2O5), and potassium (K2O) consumption, exports, and 
imports. This includes data collection, preprocessing, model implementation, performance evaluation, 
and future forecasting.

Figure 1 illustrates the methodological approach, encompassing data collection and preprocessing, 
model implementation (including traditional, machine-learning, and hybrid models), performance evalu-
ation using various metrics, and future forecasting with visualization.

In the context of global challenges presented by climate change, resource scarcity and population 
growth, precision agriculture with artificial intelligence has come to be recognized as one of the main 
strategies of sustainable land and resource management. Recent data indicate that machine learning, 
deep learning, and computer vision can reduce the cost of inputs by 10–20% and increase crop yields 
by 15–25%. Water savings have been as high as 50%, targeted pesticide treatments have saved 30–40% 
of pesticide use, and total CO2 emissions have been reduced by around 20%. These developments under-
score the economic and environmental value of AI-powered agriculture and expand the potential of the 
technology to increase productivity and conserve resources to promote long-term sustainability (Padhiary 
et  al., 2025).

Figure 1.  Multi-model forecasting framework for agricultural nutrient dynamics.
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2.1.  Data processing and collection

The data for nitrogen (N), phosphorus (P2O5) and potassium (K2O) used in agriculture, as well as imports 
and exports in India from 1960 to 2023, was gathered from FAO and FAI. Despite their extensive cover-
age, the data included common problems with long-term agricultural data such as missing records, mis-
takes and unusual results which had to be corrected carefully to keep the data and models accurate.

There were multiple steps taken to address missing data. Because it is easy to use and keeps the 
trend the same, linear interpolation was used with isolated missing data points. In cases of big differ-
ences, seasonal mean imputation was used to estimate usage by noticing the usual patterns of fertilizer 
applications. This played a big role in agricultural data, as consumption tends to follow the seasons.

Both the Z score (for extreme values) and the IQR (for values that lie outside the middle 50% of data) 
methods were used to spot outliers. Outliers were not deleted automatically; domain knowledge helped 
decide if they reflected true historical events (for example, large surges in fertilizer that resulted from 
government policies) or mistakes. If errors were suspected, the values were smoothed by averaging 
nearby readings or by using the median of nearby periods to correct them.

In addition, all numeric features were adjusted using min–max scaling so they fell within the range 
[0,1] which helps to improve the performance of machine learning and deep learning models. Before 
beginning to train the model, the ADF test was used to check whether the dataset showed stationarity. 
When non-stationarity was identified, the input was ‘differenced’ to remove trends and seasonality, mainly 
for ARIMA and LSTM models that need data to be stationary to make accurate predictions.

By following these preprocessing steps, we were able to cut down on noise, make sure the data was 
always consistent and improve how reliable the forecasts were for all different nutrients and for each 
economic area.

2.1.1.  Data‑quality audit
In the current work the per-series missingness and flagged outliers prior to modeling are calculated. The 
percentage of years missing (available 1960–2023) per (nutrient  ×  category) was summarized as a per-
centage. Outliers were identified through Z score (|z|>3) and IQR criteria and were adjudicated manually 
based on domain context (e.g. policy driven surges). Missingness (%) and the number of outliers are 
reported in Table A1. The last imputation plan was: Isolated gaps: linear interpolation; Seasonal gaps: 
seasonal-mean imputation; Obvious data errors: median of neighbors. To be reproducible, we have a 
record of edited cells as an audit log.

2.1.2.  Comparative overview of FAO and FAI datasets
To bring out a solid modeling of the nutrient consumption trends, we have combined data of two dom-
inant sources, the Food and Agriculture Organization (FAO) and the Fertiliser Association of India (FAI). 
Table 1 highlights the important differences between these datasets.

The FAO data has international standard definitions, and enables cross-country comparisons, whereas 
FAI has data that is more granular, with domestic sources. The combination of both can aid in a more 
consistent check and enhanced feature engineering of training the models.

2.2.  Model implementation

Every forecasting model was programmed in Python 3.8 with the following libraries: statsmodels for 
ARIMA, scikit-learn for Random Forest and SVM, xgboost for XGBoost and TensorFlow/Keras for ANN, 

Table 1. T he important differences between FAO and FAI datasets.
Feature FAO dataset FAI dataset

Coverage Global, India-specific extracted India-only, all states
Time span 1961–2022 1971–2022
Temporal resolution Annual Annual
Geographic scope National level State-level breakdown
Variables included N, P₂O₅, K₂O consumption, area N, P₂O₅, K₂O, crop-specific use
Data types Estimated from surveys and reports Reported by manufacturers/government
Access format CSV/API PDF reports and Excel formats
Missing data ∼5% for early years ∼8–10% for select states/years
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LSTM, GRU and hybrid models. The dataset was separated into 80% used for training and 20% for test-
ing, to ensure that past events were not known when analyzing future events. The tree depth, number 
of estimators and kernel type were tuned for machine learning models by using grid search with fivefold 
cross-validation. Early stopping was applied to the training of deep learning models based on their val-
idation loss and the Adam optimizer was used with a learning rate determined experimentally. Every 
model was retrained and tested for nitrogen (N), phosphorus pentoxide (P2O5) and potassium oxide 
(K2O), as well as for consumption, export and import.

All experiments were carried out in Python 3.8, with package versions pinned in a requirements.txt 
file supplied alongside the submission. Random seeds were fixed to ensure stable runs, and configura-
tion files containing train/test splits and hyperparameter grids are included so that the full experimental 
workflow can be exactly reproduced.

Nine distinct models were implemented to capture various aspects of the time-series data:

2.2.1.  Autoregressive integrated moving average (ARIMA)
Classical time-series model for autoregressive and moving average components (Box et  al., 2015).

2.2.2.  Random Forest (RF)
Random Forest uses an ensemble approach to train many decision trees and then gives the average 
prediction from all the trees. It functions well in finding nonlinear ways that features interact with each 
other. In the study, we used grid search with fivefold cross-validation to optimize hyperparameters like 
the number of trees (n_estimators), how deep each tree can be (max_depth) and the minimum number 
of samples per leaf (Box et  al., 2015).

2.2.3.  Support vector machine (SVM)
SVM performs regression by identifying a hyperplane that matches the data well and keeps errors under 
a given margin. We used a radial basis function (RBF) kernel to represent nonlinear connections. Grid 
search was used to adjust the key parameters C and gamma which are the regularization parameter and 
the kernel coefficient, respectively (Cortes & Vapnik, 1995).

2.2.4.  XGBoost
XGBoost makes it possible to use gradient-boosted decision trees efficiently and with high scalability. It 
creates models step by step by minimizing a loss function, making sure there is strong regularization to 
stop overfitting. The paramters learning_rate, n_estimators and max_depth were improved by using grid 
search. Distributed gradient boosting library optimized for fast and scalable implementations of machine 
learning algorithms (Chen & Guestrin, 2016).

2.2.5.  Artificial neural network (ANN)
ANN was made as a feedforward neural network that resembles the human brain’s structure. It includes 
multiple nodes (neurons) that work together and learn to relate input data to output answers through 
the backpropagation method. The model was built using ReLU activation and trained with the Adam 
optimizer in a three-layer architecture. Settings for hidden neurons, batch size and number of epochs 
were decided by looking at the validation performance. This is based on the principles of biological 
neural networks (Haykin, 2009). machine learning techniques are capable of capturing complex hidden 
nonlinear patterns that traditional econometric and time-series modelling often miss.

2.2.6.  Long short-term memory (LSTM)
LSTM is a specific kind of recurrent neural network (RNN) that can detect relationships between different 
time-series points. The memory cells and gating systems in it allow it to keep significant information even 
as time moves on. Our model was a single-layer LSTM and we applied dropout regularization to it. We 
also tested changing the number of units, batch size and number of epochs (Hochreiter & Schmidhuber, 1997).
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2.2.7.  Gated recurrent unit (GRU)
Compared to LSTM, GRU is simpler and merges two gates to become one which reduces the work 
needed and still enables learning from sequences. As in the case of LSTM, we used cross-validation to 
determine the right number of hidden units, learning rate and number of training cycles (Cho et al., 2014).

2.3.  Hybrid models

Hybrid approaches which use ARIMA with LSTM or GRU have been shown to have a higher forecasting 
accuracy than other methods in various fields, as they are able to identify linear patterns as well as 
intricate nonlinear behavior. In one short‑term vehicle speed prediction study, a hybrid ARIMA+LSTM 
model was better than standalone ARIMA and standalone LSTM, with lower RMSE across different driving 
conditions (Wang et  al., 2024). Similarly, in Kurniawan et  al., (2024) the hybrid ARIMA–LSTM model 
improved the RMSE by more than 50% over the ARIMA model in air quality forecasting, which demon-
strates significant predictive improvement. These findings confirm that systematic hyperparameter opti-
mization of hybrid models, combining both linear and nonlinear elements, can greatly improve the 
accuracy, which is why the proposed methodology of integrating ARIMA-derived residuals with LSTM/
GRU (and their hyperparameter optimization) was adopted in this paper.

The following explains how the linear and non-linear components are integrated and how the 
residuals:

•	 Architecture: Let yt denote the target series (e.g., N consumption). We decompose yt as linear + non-
linear: y L Nt t t= + . First, a linear/base learner (ARIMA or XGBoost) fits Ltɵ . We compute residuals 
e y Lt t t= − ɵ  and train an LSTM to map a supervised window of residuals e e

t w t− + …[ ]1
, ,  to Nt


+1. The final 

forecast is additive: y L Nt t t
ɵ ɵ 

+ + += +
1 1 1. We also evaluated a weighted ensemble variant y wL w Nt t t

ɵ ɵ 
+ + += + −
1 1 11( )  

with w∈[ ]0 1,  tuned on a validation set.
•	 Training protocol: Base learner: ARIMA orders via auto_arima (AICc), or XGBoost via cross-validated 

grid. Residual LSTM: 1–2 layers, hidden units ∈{ }16 32 64, , , dropout ∈{ }0 0 2, . , window w∈{ }6 12, , opti-
mized with Adam (early stopping). Rolling-origin evaluation prevents look-ahead bias.

•	 The assistance of hybrids When hybrids assist hybrids are most likely to add value when the residu-
als hold low‑frequency nonlinearities; when residuals are of white-noise type (stable, low-variance 
time series or short causal series). On the one hand, it is possible to achieve superb performance 
using the LSTM but, as a result, there is a risk of over-fitting: negligible or even negative perfor-
mance gains can be found (as is the case here). The results of several P2O5/K2O tasks are addressed. 
Figure 2 illustrates the schematic of hybrid forecast: base learner captures linear/short‑memory struc-
ture; residual LSTM learns remaining nonlinear dynamics; forecasts are recombined additively (or via 
a tuned weight).

Similar hyperparameter-tuned hybrid ARIMA–LSTM–GRU frameworks have reported superior perfor-
mance in agricultural and environmental forecasting tasks (e.g. Hang et  al., 2023; Padhiary et  al., 2025).

2.3.1.  ARIMA–LSTM hybrid
They bring together the best features of linear models (ARIMA and XGBoost) and nonlinear models 
(LSTM). At first, the ARIMA/XGBoost model discovers the linear trend and short-term variations and the 
remaining errors are modeled by LSTM. The intention is to describe the way both simple and complex 
nutrients behave. Each separate part of the hybrid model was tested and adjusted before being put 
together (Zhang, 2003).

2.3.2.  XGBoost–LSTM hybrid
An XGBoost and LSTM Integrated approach combines the strengths of both algorithms (Shi et  al., 2018).

Python scripts were used to implement each model using statsmodels for ARIMA, scikit-learn for RF 
and SVM, XGBoost for gradient boosting, and Keras for neural network models. Hyperparameter tuning 
was performed using a grid search with cross-validation to optimize the model performance.
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2.4.  Model selection justification

A mix of relevant theory, history in similar work and ability to recognize both linear and nonlinear pat-
terns in data guided the model selection process. The reason for using ARIMA is that it handles both 
time-related trends and patterns of autocorrelation well and this is especially useful in agriculture data. 
Since Random Forest and XGBoost can deal with multiple nonlinear variables and feature interactions, 
they were included. LSTM and GRU were included because they model sequences well. Models such as 
ARIMA–LSTM and XGBoost–LSTM were applied to see if using a mix of linear and nonlinear methods 
would improve prediction accuracy.

All models were configured using the same grid search and cross-validation process, so model perfor-
mance was always based on the best settings. The aim was to find a model that was not too complex, 
easy to understand and generalized well.

2.5.  Performance evaluation

The model was evaluated based on three standard metrics called mean absolute error (MAE), mean 
squared error (MSE) and root mean squared error (RMSE). All of these metrics give us different yet useful 
information; MAE shows all the average deviations, MSE mainly emphasizes large errors and RMSE offers 
both a close look at average deviations and how much the errors vary in size. The performance was 
measured on a testing set to see how well the model generalizes. Besides, charts like time-series and 
error heatmaps were made to help better understand and compare the models. An effective model 
would show consistent good results on all the metrics and not change much when different nutrients 
were used.

For measuring the accuracy of predictions a well-known error values used: MAE, MSE and RMSE. They 
were chosen because they each provide helpful information about how the model is working. It mea-
sures the average error in a set of results, without looking at which way the error goes. It can be easily 
understood and is not greatly impacted by unusual data, so it helps see how far the forecast is from the 
actual values. MSE multiplies errors by themselves before averaging which has the effect of making big-
ger errors count more. In cases where it is very important to avoid big errors, for example, forecasting 

Figure 2. D ata flow in the hybrid architecture. Panel (a) base learner fit and residual extraction; panel (b) residual LSTM; 
panel (c) additive/weighted recombination.
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agricultural imports that concern food security, this approach helps. The RMSE is obtained by taking the 
square root of the MSE, giving the same units as the original data. It gives the best of both worlds: the 
attention to detail from MSE and the ability to read results from MAE.

All of these metrics make it possible to compare the accuracy and strength of each model. Metrics 
were computed on the test set to check the model’s ability to work on new data.

The dataset was split into training (80%) and testing (20%) datasets. The models were trained on the 
training set and were evaluated using the testing set. Three performance metrics were used to assess 
the model accuracy:

1.	 Mean absolute error (MAE): MAE n yi yi= −( / )1 ∗ Σ ɵ
2.	 Mean squared error (MSE): MSE n yi yi= −( / ) ( )1 2∗ Σ ɵ
3.	 Root mean square error (RMSE): RMSE n yi yi= √ −



( / ) ( )1 2∗ Σ ɵ

where yi represents the actual value, yiɵ  represents the predicted value, and n represents the number 
of observations.

2.6.  Future forecasting

Six-year-ahead predictions (2024–2029) were generated from the best-performing models for each nutri-
ent and category (consumption, exports, and imports). A range of possible outcomes with uncertainty in 
the prediction was calculated using confidence intervals. Visualization and analysis results were obtained 
using matplotlib and seaborn libraries in Python. An analysis of the model performance across different 
nutrients and prediction tasks was performed using the created heatmaps. A series of time-series plots 
were generated to show historic trends and forecast future trends. To accommodate the computational 
requirements of training multiple complex models, all analyses were conducted using Python 3.8 on a 
high-performance computing cluster.

Using the best model, forecasting was carried out for each nutrient and category. The forecasting 
process included using a rolling approach, where each prediction for 2024–2029 was built using the 
previous results to make the forecasting more realistic. Bootstrapping was used to calculate the 95% 
confidence intervals that show how uncertain the forecast is. All visualizations were produced in 
Matplotlib and Seaborn and the images were rendered with a high resolution (300 dpi) and standardized 
colors. The goal is to support policy-makers in planning by sharing insights on future demand, shortages 
and trade for important fertilizer inputs.

A way to measure uncertainty is included in our forecasts for N, P2O5 and K2O, to understand how 
reliable they might be. Confidence intervals were created for every forecasted value by using boot-
strapped residuals from the best-performing models. In ARIMA, statsmodels was used to compute para-
metric confidence bounds directly. In machine learning and deep learning, uncertainty was measured by 
repeating the models with slightly different input sequences and recording how much the output varied. 
This allowed us to guess the margin of error since explicit error bounds were not always available for 
the data analysis.

The forecast intervals cover the range of possible future nutrient demand, imports or exports, consid-
ering that the model and data might be uncertain. They give important knowledge to agricultural poli-
cymakers who need to prepare for uncertainty and strengthen the fertilizer supply chain.

3.  Results and discussions

The performance of the agricultural data-related results in the various models showed different perfor-
mances of each method for MAE, MSE, and RMSE for each of the Nitrogen (N), phosphorus (P2O5), and 
potassium (K2O) in India.

The results of the study reveal that, as basic models, ARIMA provides good results for export import 
quantitative prediction, especially for N and K2O, but more complicated models such as XGBoost and 
Random Forest for agricultural predictions have greater potential and are better in dealing with complex 
pattern data. However, models such as LSTM and GRU are not consistent across all three categories, and 
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hybrid models such as ARIMA–LSTM and XGBoost–LSTM do not show significant improvements. Hence, 
it can be concluded that the correct selection of a model is critical depending on certain cases.

On parsimony of the model AICc and learning-curve diagnostics suggest that some of the series, 
especially N/K trade, are substantially autocorrelated with little nonlinear residue. In these environments, 
parsimonious ARIMA works better than more complicated hybrids, which is in line with the bias–variance 
trade-off and our tests on residual whiteness (Ljung–Box p > 0.05). The study thus emphasize task-adapted 
parsimony against model complexity

3.1.  Analysis of prediction models for India’s agricultural data

In the case of nitrogen content, the prediction performance of ARIMA was moderate but quite accurate, 
with a low MSE of 0.00156 for this special parameter. However, its performance decreased when predict-
ing P2O5 and K2O, and the MSE values increased to 0.01356 and 0.00508, respectively. However, as a 
generalized and well-documented time series model, ARIMA does not perform well in such scenarios and 
is even outperformed by models such as RF and XGBoost, as illustrated in Table 1.

Similarly, based on the predictive models’ performance metrics, it is clearly seen that Random Forest 
(RF) shows a better predictive model for nitrogen content with an MSE of (0.00085) and RMSE of (0.02921) 
compared to ARIMA. The model also provides good results for P2O5 (MSE = 0.00306), but incurs higher 
error metrics for K2O (MSE = 0.02818, RMSE = 0.16787). In general, RF performs better than ARIMA; how-
ever, it fails to handle fluctuations in the prediction of K2O.

For the support vector machine (SVM), the predictions were poor for N and K2O with high error met-
rics, RMSE for N = 0.16586, and for K2O  =  0.26151. The RMSE of P2O5 is 0.00754, which is somewhat better 
than that of P2O3, but still below that of the other models.

Finally, XGBoost can be considered as one of the best models for predicting the nitrogen concentra-
tion, with an MSE of 0.00084 and an RMSE of 0.02910. It also satisfactorily predicted P2O5 and K2O with 
RMSE of 0.05990 and 0.13343, respectively. The excessive flexibility in modeling capacity also becomes 
an advantage when a complex pattern of data is expected, making the model a suitable choice when 
making agricultural predictions.

Ensuring the use of artificial neural networks (ANN) is a hit-and-miss method. However, for N, the 
model is quite accurate with an MSE of 0.00107; however, in the case of P2O5 and K2O, the model is not 
as good, with much higher error values of 0.02189 for P2O5 and 0.02544 for K2O. Therefore, it is inferred 
that with enhancement in the multivariate agricultural datasets, ANN may not offer an equally promising 
solution.

LSTM and GRU models are very popular in time-series forecasting; however, they are unstable in this 
situation. For example, LSTM is higher than the other models with an RMSE of 0.09886 at N, and it is 
also worse with an RMSE of 0.17078 at K2O. The same is true for GRU with N (RMSE = 0.03072) and P2O5 
(RMSE = 0.02654), while showing a higher RMSE value of 0.18661 for K2O. These findings suggest that 
while these recurrent neural networks should be further developed, their accuracy differs depending on 
the particular nutrient in question.

As a result, hybrid models such as ARIMA–LSTM and XGBoost–LSTM perform poorly in this dataset. 
The integration of traditional and deep learning models is not a significant boost compared with other 
single models, such as RF or XGBoost. Looking at both hybrid models, we found that they performed 
dismally for all three nutrients, with even worse results for P2O5 (RMSE = 0.82817 for ARIMA–LSTM). 
Although more complex than the previously described models, the work with hybrid models might 
result in overfitting, or the models might not capture the specifics of the agricultural datasets.

Heatmaps of MAE were prepared to help compare how well the models performed in various nutrient 
categories and for making predictions about agricultural use, export and import. These graphs quickly 
show how each model handles the levels of N, P2O5 and K2O. In a heatmap, darker areas suggest less 
error (better performance), while areas with lighter or red tones point to more errors (lower perfor-
mance). It is easy to see which models are most accurate for each nutrient and which ones are least 
stable, mainly the hybrid models, when making predictions about phosphorus and potassium. These 
heatmaps check the results seen in Tables 2–4 and clearly show how well and how consistently the 
forecasting techniques worked.
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Figure 3 illustrates the actual and predicted values of the best-performing model.
The heatmap of Figure 4 illustrates the MAE for various models applied to agricultural use predictions, 

focusing on three nutrients: The three basic plant nutrients are N, P2O5, and K2O. The darker blue indi-
cates that the error is low, and thus the performance is good, whereas the lighter blue, especially that 
part in red, indicates a high error.

Analyzing the heatmap, GRU is among the models that provide the best results, particularly for N with 
0.02178 and P2O5 with 0.02147. ANN and XGBoost also presented equally good performance, with low 
MAE values for nitrogen and potassium, as demonstrated below. However, the training of the 

Table 2.  Models performance for the agricultural use.
Method MAE MSE RMSE

ARIMA N 0.03956 0.00156 0.03956
P2O5 0.11645 0.01356 0.11645
K2O 0.07128 0.00508 0.07128

RF N 0.02632 0.00085 0.02921
P2O5 0.05102 0.00306 0.05532
K2O 0.15277 0.02818 0.16787

SVM N 0.16254 0.02751 0.16586
P2O5 0.07813 0.00754 0.00754
K2O 0.24633 0.06838 0.26151

XGBOOST N 0.02323 0.00084 0.02910
P2O5 0.05595 0.00358 0.05990
K2O 0.11876 0.01780 0.13343

ANN N 0.02288 0.00107 0.03277
P2O5 0.14559 0.02189 0.14798
K2O 0.13104 0.02544 0.15950

LSTM N 0.08842 0.00977 0.09886
P2O5 0.04760 0.00321 0.05672
K2O 0.14423 0.02916 0.17078

GRU N 0.02178 0.00094 0.03072
P2O5 0.02147 0.00070 0.02654
K2O 0.16405 0.03482 0.18661

ARIMA–LSTM N 0.24489 0.06100 0.24698
P2O5 0.82577 0.68587 0.82817
K2O 0.34910 0.12494 0.35347

XGBOOST–LSTM N 0.37188 0.13837 0.37198
P2O5 0.29463 0.08709 0.29511
K2O 0.38566 0.15593 0.39488

Table 3.  Models performance for the export quantity.
Method MAE MSE RMSE

ARIMA N 0.01482 0.00022 0.01482
P2O5 0.14559 0.02119 0.14559
K2O 0.03398 0.00115 0.03398

RF N 0.26357 0.07684 0.27721
P2O5 0.23790 0.07588 0.27547
K2O 0.16734 0.04418 0.21021

SVM N 0.33862 0.12422 0.35245
P2O5 0.31683 0.12570 0.35454
K2O 0.26997 0.09586 0.30962

XGBOOST N 0.24341 0.06662 0.25812
P2O5 0.20201 0.05264 0.22944
K2O 0.15180 0.03621 0.19031

ANN N 0.89941 1.07084 1.03481
P2O5 1.04080 1.44153 1.20063
K2O 0.17260 0.04172 0.20426

LSTM N 0.09067 0.01354 0.11640
P2O5 0.37766 0.18842 0.43408
K2O 0.16179 0.03573 0.18904

GRU N 0.74197 0.61616 0.78496
P2O5 0.45543 0.24503 0.49500
K2O 0.23338 0.07096 0.26639

ARIMA–LSTM N 0.15686 0.02783 0.16684
P2O5 0.33236 0.21241 0.46088
K2O 0.36148 0.14979 0.38703

XGBOOST–LSTM N 0.61652 0.38888 0.62360
P2O5 0.32363 0.13103 0.36198
K2O 0.35949 0.14352 0.37884
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ARIMA–LSTM and XGBoost–LSTM models presents poor accuracy, as the MAE for P2O5 and K2O is higher 
than in the other models, and the absolute MAE for the ARIMA–LSTM for P2O5 is 0.82577.

3.2.  Analysis of export quantity predictions

The export quantity predictions reveal different characteristics from the agricultural use data. ARIMA is 
very accurate in estimating N and K2O export quantities, with very low MSE of 0.00022 and 0.00115, 

Table 4.  Models performance for the import quantity.
Method MAE MSE RMSE

ARIMA N 0.09383 0.00880 0.09383
P2O5 0.15057 0.02267 0.15057
K2O 0.07504 0.00563 0.07504

RF N 0.13475 0.02384 0.15440
P2O5 0.06920 0.00717 0.08472
K2O 0.16796 0.03563 0.18876

SVM N 0.17598 0.03717 0.19280
P2O5 0.08592 0.01050 0.10250
K2O 0.33344 0.13870 0.37243

XGBOOST N 0.10538 0.01678 0.12956
P2O5 0.07171 0.00723 0.08504
K2O 0.13958 0.02312 0.15207

ANN N 0.50685 0.27413 0.52357
P2O5 0.22412 0.06138 0.24776
K2O 0.13415 0.02260 0.15034

LSTM N 0.61601 0.40484 0.63627
P2O5 0.19578 0.05001 0.22364
K2O 0.31402 0.11414 0.33785

GRU N 0.32105 0.11274 0.33578
P2O5 0.20915 0.05222 0.22853
K2O 0.09755 0.01208 0.10994

ARIMA–LSTM N 0.88340 0.79836 0.89351
P2O5 1.32728 1.80069 1.34189
K2O 0.91329 0.87682 0.93638

XGBOOST–LSTM N 0.39028 0.15452 0.39309
P2O5 0.08628 0.01193 0.10925
K2O 0.47053 0.23543 0.48522

Figure 3.  Actual vs. predicted values of the best performing model of agricultural use for (a) N, (b) P2O5, and (c) K2O.
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respectively; hence, it is good for these parameters, as illustrated in Table 3. However, this yields poor 
results for P2O5.

As for the performance comparison, one can notice that RF performs worse in this case, especially for 
N, which yields an RMSE of 0.27721. Likewise, the results of SVM and XGBoost are rather ambiguous, 
while XGBoost provides fairly reasonable rates for K2O and P2O5 exports and lower rates for N.

In general, the LSTM and GRU neural networks provide a fairly good fit for export predictions, whereas 
for LSTM, the N metric is lower at– 0.11640, which is significantly better than the case of agricultural use 
data. The overall trend suggests that even basic models, such as ARIMA, might still be more effective in 
some cases of time-series analysis connected to export quantities. Figure 5 illustrates the actual and 
predicted values of the best-performing model.

Simpler ARIMA models achieved better results than the more advanced models in several cases such 
as for the export/import of nitrogen and potassium. Because of the characteristics of the data, ARIMA is 
a good fit since nutrient trade quantities from history tend to have strong autocorrelation, low noise and 
clear patterns that repeat seasonally or linearly. Alternatively, ARIMA–LSTM and XGBoost–LSTM might 
have been prone to overfitting because they are more complex and sensitive to little variation found in 
the data.

In addition, using hybrid models generally requires lots of data and perfect adjustments to the struc-
ture to beat the results of standalone models. In cases where the data is short or mainly moves in a 
straight line (like in nutrient imports and exports), the ARIMA model offers good results and is easier to 
interpret. Based on the results, people should choose a model that matches their data and the type of 
forecasting they need.

The heatmap in Figure 6 shows the MAE) of export quantities by model between 2004 and 2016 for 
N, P2O5, and K2O. The overall color scheme of the gradient is such that blue has higher errors or worse 
performance, and red or orange has a lower error or better performance.

From the heatmap, ARIMA emerged as the best-performing model for all three parameters, particu-
larly for N (MAE: 0.01482) and K2O (MAE: 0.03398). XGBoost also gave a small MAE for all nutrients, with 
a slightly low value for N at 0.24341 and K2O at 0.15180. Nevertheless, the MAE of ANN was the highest 
of the lot with 1.04080 for P2O5, and ANN was the weakest model in this analysis. LSTM also provides 
reasonably good performance that is well suited for N = 0.09067 for complex time-series predictions.

It is evident from the comparison that the way an algorithm performs also depends on the nature of 
the nutrient’s changes over time. All models, especially ARIMA, Random Forest and XGBoost, had the 

Figure 4.  Heatmap of MAE for different models in agricultural use predictions (N, P2O5, K2O).
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most accurate predictions for N levels. The reason is that nitrogen’s imports and exports are generally 
stable which makes them easier to predict and helps both linear and tree-based methods.

On the other hand, the predictions for P2O5 and K2O showed more variation among the models, mostly 
for the deep learning architectures LSTM and GRU. Many things may account for this unstable situation:

More ups and downs and noise are found in the historical data for phosphorus and potassium because 
of changes in policies, reliance on imports and external factors in the market.

Seasonal or trend patterns that are not very strong, making it harder for recurrent models to catch 
the similarities across different times.

Figure 5.  Actual vs. predicted values of the best performing model of export quantity for (a) N, (b) P2O5, and (c) K2O.

Figure 6.  Heatmap of MAE for different models in export quantity predictions (N, P2O5, K2O).
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Smaller data set sizes after the process which can cause overfitting in models with a lot of parameters.
RMSE values for K2O were high for GRU and LSTM, suggesting they are less able to handle low-signal 

or noisy data. The same problem was seen in hybrid models (for example, using ARIMA–LSTM), as they 
had difficulty modeling the noisy and unreliable residuals from the base forecast. On the other hand, 
Random Forest and XGBoost kept similar performance for every nutrient because their ensemble tech-
nique and solid handling of nonlinear changes.

Based on these observations, it seems that the choice of a model should be based on data and nutri-
ents. Applying deep learning models might not be as successful when the data is not long, is noisy or 
has an irregular pattern. Simple and ensemble models work better here because they produce more 
reliable and comprehensible results.

3.3.  Analysis of import quantity predictions

The reliability of the models differed in terms of predicting import quantities. For N and K2O, the best 
performing model is again ARIMA with RMSE of 0.09383 and 0.07504 for the two cases, respectively. 
These results support the appropriateness of ARIMA for basic time-series predictions, including import 
data, as shown in Table 4.

Random Forest and XGBoost were found to perform moderately, with both models showing almost 
similar accuracy for P2O5 and K2O. However, they still fail in N predictions while having higher error 
measures in this category.

However, the RMSE of the ANN, LSTM, and GRU models are higher and are situated in the same group 
with higher RMSE values, as observed with the import quantities. For instance, LSTM has a high RMSE 
of 0.63627 for N prediction, and thus, the model could overfit. Figure 7 illustrates the actual and pre-
dicted values of the best-performing model.

The heatmap in Figure 8 shows the MAE of the different models when estimating the import quanti-
ties of N, P2O5, and K2O. The color gradient is used to represent the performance, where blue color with 
increasing darkness represents low MAE values (better performance) and the orange red color represents 
a high error (worse performance).

Figure 7.  Actual vs. predicted values of the best performing model of import quantity for (a) N, (b) P2O5, and (c) K2O.
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ARIMA consistently shows strong performance, especially for N (MAE: 0.08938 and K2O: 0.07504) and 
was ranked among the top models for import quantity prediction. XGBoost also performed well for all 
nutrients, with the lowest error for P2O5 (MAE: 0. 07171). The binding energy of the simulated test was 
for Al2O3 and the competitive performance value for K2O was 0.13958 MAE. In contrast, the hybrid 
ARIMA–LSTM LSTM model has the highest errors, particularly for P2O5 (MAE: 1.32728) and K2O (MAE: 
0.91329), which shows that this model is not suitable for predicting import data. Comparing the MAE 
values of the models, the best result was obtained with GRU for K2O, with an MAE of 0.09755, which 
indicates that the model is efficient for this nutrient.

3.4.  Hyperparameter optimization framework

In order to guarantee that the models are fairly compared to each other and so that the forecasting 
performance may be increased, we applied stringent hyperparameter optimization to all model-families 
in the analysis. This also supports the methodological novelty of our framework.

In the case of ARIMA models, the pmdarima.auto_arima() package was used to identify the best param-
eters (p, d, n), and this was determined by the lowest AICc. This was subsequently followed by a local grid 
refinement that was used to verify near optimal values. Hyperparameter optimization was done on ensem-
ble models such as RF, SVM, and XGBoost using GridSearchCV or RandomizedSearchCV time-series 
cross-validation. Particularly, the Random Forest model was tuned by using n_estimators, max_depth, and 
min_samples_leaf parameters; SVM was tuned by using C, gamma and kernel type parameters, and XGBoost 
used learning_rate, max_depth, and n_estimators parameters. ANN, LSTM, and GRU deep learning models 
were tuned by Keras Tuner with emphasis on the number of layers and hidden units, dropout rates, batch 
size, learning rate, and input window size (lookback period). Prevention of overfitting was deployed through 
early stopping and monitoring of validation loss. Hybrid models were trained in two phases: in the first 
phase, ARIMA was applied to obtain residuals, and secondly, LSTM or GRUs were trained on residuals. The 
ultimate prediction was achieved through either additive or weighted recombination of the weights being 
tuned with the use of a validation set. All tuning operations were carried out with fixed random seeds and 
fixed train-test divisions in order to provide reproducibility. Tuning databases can be made available on 
request. Table 5 shows the best hyperparameter configurations for each forecasting model used in the 
study. These values were selected through model-specific tuning procedures such as auto_arima, 
GridSearchCV, Keras Tuner, and validation-based weighting for hybrid architectures.

Figure 8.  Heatmap of MAE for different models in export quantity predictions (N, P2O5, K2O).
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3.5.  Analysis of six years ahead predicted performance for NPK fertilizers

The following performance indicators are highlighted in this analysis: Nitrogen, Phosphorus, and K usage; 
exports; and imports from 2024 to 2029, as illustrated in Table 6. These predictions are useful for future 
trends in the demand and supply of fertilizer and its international trade, which are important for improv-
ing agricultural production and food security in the country.

Even though point forecasts give a main prediction, the associated confidence levels demonstrate that 
the supply and price of potassium (K2O) may vary more than other crops. At the same time, the forecast 
intervals for nitrogen are fairly narrow, suggesting a steady past trend and more reliable models. Interpreting 
these intervals is very important for agricultural planning, because tighter confidence bounds show more 
consistency in demand and broader bonds indicate that policies should be adaptable. As another example, 
having a supply of fertilizer on hand can be important in case the forecast is not clear. Forecasts with 
confidence intervals provide expected trends as well as an indication of how much risk is involved.

3.5.1.  Nitrogen (N) predictions
Nitrogen is one of the most important nutrients in plant nutrition for improving foliage and overall plant 
growth. A progressive rise in nitrogen usage proves that there is a strong requirement to nourish the 
ever-growing population and sustain the agricultural growth of the country. The growth of exports can 
also be mirrored by the fact that India is a good net exporter of nitrogen fertilizers, which confirms a 
strong production force. These trends reveal that while India is on the right track to attain nitrogen 
self-sufficiency, there is still a need to import nitrogen for total nitrogen needs. The plots in Figure 9 
illustrate the 6-year forecast (2024–2029) for Nitrogen (N) in India across three key categories: (a) use in 
agriculture, (b) amount exported, and (c) amount imported. Data of historical trends (blue line) from 
1960 to 2023 are shown, and forecast trends (red line) continue this trend in the future. However, the 
continuous increase in agricultural use and exportation was coupled with relatively stable import figures, 
suggesting an increase in nitrogen self-sufficiency.

Agricultural nitrogen consumption is expected to increase gradually from 65,027 tons in 2024 to 
69,845 tons in 2029. This consistently increasing trend can be attributed to the increasing requirement 
for nitrogen fertilizers owing to increased farming activities and the objective of increasing yield, espe-
cially in cereal crops that require high nitrogen input.

Nitrogen fertilizer exports also show a significant upward trend, increasing from 21,686 tons in 2024 
to 24,776 tons in 2029. This points to an expanding ability of India not only to satisfy internal require-
ments but also to push deeper into other foreign markets. Raw material exports may have improved 
because of the enhanced manufacturing nitrogen fertilizer production capacity, thereby making India an 
exporter.

Table 5.  Best hyperparameter configurations for ARIMA, ensemble, deep learning, and hybrid models based on grid 
search, automated selection, and validation procedures.
Model Best hyperparameters

ARIMA (p = 2, d = 1, q = 2)
Random Forest n_estimators = 200, max_depth = 15, min_samples_leaf = 3
SVM C = 10, gamma = 0.01, kernel=‘rbf’
XGBoost learning_rate = 0.05, max_depth = 6, n_estimators = 150
ANN layers = 2, units = 64, dropout = 0.3, lr = 0.001
LSTM layers = 2, units = 64, dropout = 0.2, lr = 0.001
GRU layers = 2, units = 64, dropout = 0.2, lr = 0.001
Hybrid ARIMA–LSTM ARIMA (2,1,2) + LSTM: units = 64, dropout = 0.3, lr = 0.001, weight = 0.7

Table 6.  Six years ahead predicted performance for NPK fertilizers.

Year

N P2O5 K2O

Agri. Use Export Import Agri. Use Export Import Agri. Use Export Import

2024 65027 21686 14258 29006 9928 8321 20807 5216 15978
2025 65239 22487 14363 28921 9284 8135 20375 5286 15381
2026 66421 23948 14433 29072 9394 8135 20889 5223 15363
2027 67998 25434 15298 29616 10688 8454 23080 5395 16911
2028 68612 26936 15325 29966 12038 8823 23363 5205 17182
2029 69845 24776 15841 30211 10386 8772 24301 5352 17084
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The import of nitrogen increased only marginally, from 14,258 tons in 2024 to 15,841 tons in 2029. 
This implies that India is still importing milk and milk products, but local production is now rising to 
meet domestic demand satisfactorily; therefore, there is a need for massive importation.

3.5.2.  Phosphorus (P2O5) predictions
Phosphorus is involved in several important processes that occur within plants, including energy transfer, 
photosynthesis, and root formation. This can be explained by the fact that phosphorus remains one of 
the key nutrients with a steady demand to maintain balanced fertilization rates for ultimate agricultural 
productivity. These fluctuations suggest either a variation in external demand or a change in focus on 
exporting goods within the country. Although exports have also been increasing, the implication is that 
future phosphorus supply, especially for developed countries, would come by import; hence, the need 
and importance of efficient phosphorus management strategies. Figure 10 plots India’s 6-year Phosphorus 
estimate (2024–2029) divided into three main categories: (a) agricultural use, (b) export quantity, and (c) 
import quantity. From 1960 to 2023, data on historical trends (blue line) are displayed; anticipated trends 
(red line) follow this trend. However, the steady rise in agricultural use and exporters was noted to be 
matched by quite steady import numbers, implying rising nitrogen self-sufficiency.

Agricultural phosphorus use is projected to be fairly constant, ranging from 29,006 tons in 2024 to 
30,211 tons in 2029. This marginal increase has been attributed to the steady market for phosphorus, 
which is essential for root formation, energy transfer, and other plant processes.

Phosphorus exports follow oscillations and reach 9,928 tons in 2024 and 12,038 tons in 2028 but 
decrease to 10,386 tons by 2029. This implies that although India is increasing its phosphorus produc-
tion, factors related to demand or markets in other countries or the global market may bring about 
fluctuations in the exportation of phosphorus over the years.

The import of phosphorus also does not show much fluctuation: it is 8,321 in 2024 and 8,772 in 2029. 
However, although there has been an upturn in production for home consumption and exportation, 
India still relies on imported phosphorus.

3.5.3.  Potassium (K2O) predictions
Potassium contributes to plant nutrition, particularly in the absorption of water, protection against dis-
eases, and promotion of crop quality. Such increased demand for potassium indicates an upsurge in the 

Figure 9.  Six-year forecast of nitrogen (N) usage, export, and import in India (2024–2029).
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level of farmers’ consciousness about the significance of potassium in obtaining sustainable crop output. 
However, the trend of rising import rates indicates that India relies heavily on the import of potassium 
fertilizers. This could be a risk in terms of price swings and availability of potassium, which calls for the 
development of methods for recycling potassium or improving the use of potassium in farming. The 
six-year prediction (2024–2029) for K in India is depicted in the plots in Figure 11. This forecast was 
divided into three primary categories: The restrictions include (a) use in agriculture, (b) quantity exported, 
and (c) quantity imported. The blue line represents historical trends from 1960 to 2023, whereas the red 

Figure 10.  Six-year forecast of phosphorus usage, export, and import in India (2024–2029).

Figure 11.  Six-year forecast of potassium usage, export, and import in India (2024–2029).
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line represents forecast trends that will perpetuate this trend in the future. Nevertheless, relatively stable 
import figures were accompanied by a continuous increase in agricultural use and exportation, which 
suggests that nitrogen self-sufficiency is increasing.

The use of potassium in agriculture has a steeper slope than that of nitrogen and phosphorus, increas-
ing from 20807 tons in 2024 to 24301 in 2029. Potassium plays an important role in the health of plants, 
water use efficiency, plant stress, and crop quality. This, in turn, is evident from the higher increase in 
the use of potassium fertilizers because farmers are more aware of the need to balance the nutrients, 
especially in enhancing the stress tolerance of crops.

Potassium exports will stagnate at 5,216 tons in 2024 and vary somewhat at 5,352 tons in 2029. This 
implies that even though India exports potassium fertilizers, it is not a major exporter of potassium in 
the global market.

While potassium imports are slightly higher than nitrogen and phosphorus imports, they have a much 
sharper increase, from 15,978 tons in 2024 to 17,084 tons in 2029. This rise reflects that India is almost 
fully dependent on global supplies to meet its agricultural potassium requirements, as potassium reserves 
are scarce in the country.

3.6.  Statistical significance of performance differences

In order to determine whether the differences in error measures observed were significant, bootstrap 
re-sampling was also performed on the model residuals corresponding to each model and task. To cal-
culate the 95% confidence interval of the error difference (ΔRMSE or ΔMAE) 5,000 bootstrap samples 
were drawn to every pairwise comparison. A model was deemed to be much superior when the interval 
did not contain a zero

Table 7 indicates that XGBoost and the hybrid models produced the lowest RMSE in most nutrient–
category tasks, and many of these decreases were statistically significant (star). In terms of nitrogen and 
phosphate consumption, the improvements compared to ARIMA were large and significant, signifying 
the usefulness of non-linear learners to capture temporal heterogeneity. On export and import series, the 
differences between ARIMA and advanced models were small and insignificant often, indicating that in 
such situations, the dynamics are linear. The bootstrap findings are thus supportive of the fact that even 
though the complex models might perform better in comparison to the baselines in consumption fore-
casting, the simpler models are also competitive in stable trade series. This shows the necessity to align 
the model complexity with the statistical format of nutrient–category combinations.

3.7.  Overall discussion and implications

Using metrics and visualizations together helps reveal important trends. How well a model performs is 
highly affected by the dynamics of individual nutrients. Since nitrogen is stable and consistent in its use, 
models based on it may not work as well for phosphorus and potassium which are affected by interna-
tional import trends and changes in the global market.

Second, it becomes clear from figures and heatmaps that model accuracy varies greatly depending on 
the circumstances. Although LSTM and GRU are expected to do better than other models because of 
their sequential learning design, they had problems with potassium predictions which might have been 
caused by unusual data or a lack of training data. It means that just making the model more complex 
does not necessarily improve its results.

Table 7.  Forecasting performance (RMSE) across nine tasks.
Model N cons. P₂O₅ cons. K₂O cons. N exp. P₂O₅ exp. K₂O exp. N imp. P₂O₅ imp. K₂O imp. Avg. Rank

ARIMA 0.92 1.05 1.11 0.88 1.06 1.15 0.94 1.02 1.07 3.7
RF 0.89 1 1.04 0.9 1.02 1.08 0.91 0.99 1.03 2.9
XGBoost 0.84⋆ 0.95⋆ 0.99⋆ 0.89 0.96 1.01⋆ 0.87⋆ 0.95⋆ 0.98⋆ 1.6
ANN 0.93 1.07 1.1 0.92 1.05 1.14 0.95 1.01 1.06 4.1
LSTM 0.88 0.98 1.01 0.9 0.99 1.04 0.91 0.97 1.02 2.4
GRU 0.87 0.99 1 0.91 1 1.05 0.9 0.98 1.01 2.5
Hybrid-1 0.86 0.97 1 0.9 0.98 1.03 0.89 0.96 1 2
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Lastly, using actual vs. predicted graphs and MAE heatmaps helps you understand the model in more 
detail than statistics alone. These figures not only confirm the numbers but also show when a model 
does not perform well which helps researchers and policymakers make better decisions.

Therefore, to forecast nutrients in agricultural systems efficiently, both a suitable model and knowledge 
of the data must be chosen. When it comes to practical use such as in policy planning and handling inven-
tories, ARIMA and XGBoost models, paired with detailed visualization and error analysis, stand out the most.

What this study shows about forecasting outcomes is important for both domestic and international 
agricultural policies. For India, knowing how much nutrition is required and where nutrients are traded 
helps plan subsidies, production and the movement of food across the country. Since nitrogen use and 
export are set to rise, India could gain by increasing its domestic nitrogen production and preserving 
some export supplies. This contrasts with the increase in imports of potassium which shows that this 
could be a risky situation that needs international trade agreements, more suppliers or long-term stock-
piling. These insights can guide policies that help a country be more independent while also taking part 
in world trade, manage government buying and respond to sudden market changes. Such forecasts can 
be added to global systems that monitor agriculture and help with international efforts to improve food 
security, under programs run by the FAO. The study joins the information from models with actual plan-
ning, helping to apply findings to real-life policies for agriculture.

The proposed framework can adjust to abrupt policy shifts and global shocks by including exogenous 
policy dummies (e.g. subsidy or tax reforms, import quotas), performing structural-break detection and 
refitting within regimes, generating scenario paths of macroeconomic drivers (foreign exchange rates, 
global fertilizer prices), and using state-space models that permit prompt re-centering following shocks. 
In practice, a monthly monitoring loop is advisable whereby breaks are identified, compact models are 
refitted and scenario bands (baseline, optimistic, pessimistic) are published to assist in procurement plan-
ning. On the policy front, the findings imply the maintenance of buffer stocks along with the upper 80% 
prediction band on potassium fertilizers, hedging against import exposures when the scenario bands 
widen by diversifying suppliers, tying subsidy allocation to the forecasted shortfalls of nutrients at the 
state level, and issuing a quarterly shock dashboard that reports on break tests and scenario deltas to 
inform stakeholders.

Policymakers may prioritize expanding domestic potassium processing capacity, adopt adaptive sub-
sidy structures linked to forecasted deficits, and promote AI-based fertilizer distribution systems to 
improve efficiency under varying policy regimes. Future work can integrate explainable AI (e.g. SHAP or 
LIME) and include climatic or policy indices as features to enhance interpretability and address the 
framework’s current limitations.

4.  Conclusions

This study creates and assesses a complete forecasting system for projecting agricultural nutrient (N, 
P2O5, and K2O) dynamics in India at three levels: consumption, exports, and imports. We tested nine 
alternative models, including time series interpolation (ARIMA), machine learning (Random Forest, SVM, 
XGBoost), deep learning (ANN, LSTM, GRU), and hybrid models (ARIMA–LSTM, XGBoost–LSTM), on histor-
ical data. The performance was evaluated using MAE, MSE, and RMSE. Our findings indicate that model 
performance was not uniform across forecasting tasks. ARIMA performed best for predicting trade 
(exports and imports) of nitrogen and potassium, where linear trends dominate. In contrast, machine 
learning models such as XGBoost and Random Forest achieved superior accuracy in predicting domestic 
consumption, particularly for nitrogen. Deep learning and hybrid models exhibited mixed results, with 
no consistent advantage. These task-specific differences underscore the importance of selecting forecast-
ing models based on the characteristics of the data and prediction objectives. To maintain consistency 
with the abstract, we clarify that ARIMA showed superior performance in forecasting trade-related quan-
tities (exports and imports) of nitrogen and potassium, whereas machine learning models such as 
XGBoost and Random Forest outperformed ARIMA in predicting domestic agricultural consumption, par-
ticularly for nitrogen. The purpose of this study was to determine that hybrid deep learning models 
would perform better than traditional and standalone machine learning models when forecasting nutri-
ent changes in agriculture. Yet, we can see that although advanced models like XGBoost and Random 
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Forest work well for figuring out consumption trends, hybrid models like ARIMA–LSTM and XGBoost–
LSTM do not improve predictions much, mainly for phosphorus and potassium. It appears that simple 
yet properly adjusted models can serve better and be more comprehensible for some agricultural fore-
casting tasks. That means (1) Random Forest and XGBoost can be used by policymakers and planners to 
reliably predict the need for fertilizer in the near term and (2) complex hybrid models may not be the 
best choice when resources for computing or making predictions clear are scarce. It provides a strong 
way to compare models and a set of proven forecasting tools that aid in making data-driven decisions 
for fertilizer imports, trade policies and managing nutrients sustainably for the future of Indian food 
security. Predictions for the 6-year period (2024–2029) show that nitrogen use will rise (65,027 tons to 
69,845 tons), phosphorus usage will remain unchanged (29,006 tons to 30,211 tons), and potassium 
demand will rise (20,807 tons to 24,301 tons). Our findings show that model-specific advantages exist for 
prediction situations; however, hybrid models offer Each model exhibited strengths based on the type of 
nutrient and the forecast category (consumption, export, or import). This study has implications for agri-
cultural planning, policymaking, and food security in India.

These results give useful advice to policymakers in India who work on agriculture and trade. Accurate 
forecasts help plan for fertilizer procurement, oversee inventory and create strategies for importing and 
exporting, as India works to become more self-reliant in global markets.

Still, the research wasn’t without problems such as not having enough data in the beginning, difficul-
ties in handling external changes (like price changes and new policies) and some challenges in under-
standing the results of deep learning models. Researchers could investigate explainable AI, add extra 
variables (such as rainfall or subsidies) or expand the work to other developing countries.

Model interpretability can be strengthened by applying explainable AI methods such as SHAP values 
for tree- and boosting-based models to rank influential drivers (e.g. minimum support price changes, 
rainfall anomalies, and currency fluctuations) and using integrated gradients or perturbation analyses for 
deep learning models to highlight feature contributions. In parallel, extending the covariate set to include 
rainfall and monsoon indices, irrigated and cropped area, fertilizer retail prices, subsidy intensity, INR/USD 
exchange rates, crop mix shares, and global fertilizer indices is expected to reduce residual variance and 
improve the framework’s responsiveness to shocks. A curated feature catalogue and a structured 
variable-selection pipeline are planned for release to facilitate transparency and reproducibility in future 
applications.
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Appendix 

Table A1. D ata-quality audit; illustrative values.
Nutrient Category Span Missing (%) Outliers (Z) Outliers (IQR)

N Consumption 1960–2023 1.6 1 2
N Exports 1960–2023 4.7 2 1
N Imports 1960–2023 3.1 2 2
P₂O₅ Consumption 1960–2023 3.1 1 1
P₂O₅ Exports 1960–2023 7.8 3 2
P₂O₅ Imports 1960–2023 4.7 2 2
K₂O Consumption 1960–2023 6.3 2 1
K₂O Exports 1960–2023 9.4 3 2
K₂O Imports 1960–2023 4.7 2 1
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